Invariant surfaces in homogenous space Sol with constant curvature
نویسنده
چکیده
A surface in homogenous space Sol is said to be an invariant surface if it is invariant under some of the two 1-parameter groups of isometries of the ambient space whose fix point sets are totally geodesic surfaces. In this work we study invariant surfaces that satisfy a certain condition on their curvatures. We classify invariant surfaces with constant mean curvature and constant Gaussian curvature. Also, we characterize invariant surfaces that satisfy a linear Weingarten relation. MSC: 53A10
منابع مشابه
Constant mean curvature surfaces in Sol with non-empty boundary
In homogenous space Sol we study compact surfaces with constant mean curvature and with non-empty boundary. We ask how the geometry of the boundary curve imposes restrictions over all possible configurations that the surface can adopt. We obtain a flux formula and we establish results that assert that, under some restrictions, the symmetry of the boundary is inherited into the surface. MSC: 53A10
متن کاملCoordinate finite type invariant surfaces in Sol spaces
In the present paper, we study surfaces invariant under the 1-parameter subgroup in Sol space $rm Sol_3$. Also, we characterize the surfaces in $rm Sol_3$ whose coordinate functions of an immersion of the surface are eigenfunctions of the Laplacian $Delta$ of the surface.
متن کاملHyperbolic surfaces of $L_1$-2-type
In this paper, we show that an $L_1$-2-type surface in the three-dimensional hyperbolic space $H^3subset R^4_1$ either is an open piece of a standard Riemannian product $ H^1(-sqrt{1+r^2})times S^{1}(r)$, or it has non constant mean curvature, non constant Gaussian curvature, and non constant principal curvatures.
متن کاملOn the Invariant Theory of Weingarten Surfaces in Euclidean Space
We prove that any strongly regular Weingarten surface in Euclidean space carries locally geometric principal parameters. The basic theorem states that any strongly regular Weingarten surface is determined up to a motion by its structural functions and the normal curvature function satisfying a geometric differential equation. We apply these results to the special Weingarten surfaces: minimal su...
متن کامل